
ABSTRACT

The significant growth in the number of mobile
users and their increasing demand for flexible
access to various services has motivated
significant research work in the area of future
wireless access systems. It is assumed that
heterogeneous radio access networks will be co-
operating, as well as the IP-based backbone. Our
assumptions on these different radio access
technologies and the backbone result in a highly
complex architecture. Consequently, management
platform designers and developers need
organizational guidance during the phase of
creation of advanced service management
platforms. Therefore, in this paper, a Unified
Modeling Language process for designing such
software platforms is presented.

KEYWORDS

Service Management, UML, Software Design

I. INTRODUCTION

As the wireless world evolves to become an
ubiquitous communications infrastructure, there is
a clear need for providing a detailed design
methodology taking into account that future
telecommunications platforms will be distributed
over different technologies and operators. The
systems are more and more real-time platforms,
managing networks and services with high
requirements. Moreover, the time granted for the
service deployment is notably decreasing
nowadays.

We present in this paper an approach towards
designing an advanced service management

platform based on the UML modeling. The
Unified Modeling Language (UML) [2] is a
standard notation for the modeling of real-world
objects, providing a process for developing an
object-oriented design methodology [5]. It gives a
standard way to visualize, specify, construct and
document the different phases of requirements,
analysis, and design of complex software systems.
Today’s management platforms were developed
using proprietary methodologies and solutions,
and it is necessary to significantly adopt, as soon
as possible, a well-defined and well-managed
process for the development of future service and
network management platforms.

This paper identifies the overall process that has
been used in the development of an advanced
service management platform. We modeled the
system using Rational [6] software, and went
through the different models such as the Use-
Case, Analysis, Design, Deployment and
Implementation models.

Our paper is structured as follows: Section II
describes the context of our work. Section III
introduces the multi-operator service management
platform, whilst Section IV illustrates the
software engineering approach for designing the
above-mentioned platform. Finally, Section V
concludes the paper and outlines future work.

II. PROBLEM STATEMENT

This design work has been done within the
framework of the IST MONASIDRE project [4].
This approach considers the overall UMTS,
DVB-T and Hiperlan-2 radio access technologies,
while the fixed network is IP-based. This open
management platform is capable of:

Karim El-Khazen, Radu State
Motorola Labs

Centre de Recherche de Motorola (CRM)
91193 Gif-sur-Yvette, France

Email: {elkhazen, state}@crm.mot.com

Designing an Advanced Service Management Platform

• Interworking with the Service Provider
(SP) mechanisms,

• Monitoring and analyzing the
performance of the managed
infrastructure,

• And performing dynamic reconfigurations
of the overall three types of networks.

Figure 1 identifies the different network domains
and their interconnection with the distributed
service and management platform.

IP Networks

Service and
content

providers
domains

Fixed network
domains

Radio access network
domains

(Distributed) Service and Network Management System

Figure 1

Before describing the design process, we will
briefly present some of the requirements of the
platform. First of all, the key characteristics of
this integrated management platform are:

• Unified interface with the Service
Providers,

• Development of a standardized interfaces
for the resource reservation and the
monitoring of the network elements of
different radio access technologies,

• Incorporation of a set of sophisticated
resource management strategies into an
open software architecture,

• Integration of several management
paradigms and protocols (SNMP [7],
COPS [8], CMISE/CMIP [7]...)

Next, in the development of the MONASIDRE
platform, a comprehensive process was needed
for the following reasons:

• Distributed-oriented architecture:
Common Object Request Broker
Architecture (CORBA) is used as an
underlying communication bus for
services and application components,

• Multi-language implementation: C++,
Java, HTML for web-based GUI, XML
for flexible data representation…

• Multi-platform: MS Windows, Unix,
Linux are used to support the global
management platform,

• Partners with different characteristics
cooperate in order to develop the
software. Manufacturers, a network
operator, a service provider, and
universities co-work in this project with a
common objective but different
exploitations plans,

• Developments are performed in several
physical locations.

III. THE MANAGEMENT ARCHITECTURE

The MONASIDRE system environment involves
three independent network types (three different
wireless access technologies), each with a
MONASIDRE platform. Each wireless access
system belongs to different operators. In this
context, a pattern for distributing the software
components of the management system is
depicted in Figure 2.

IP NETWORK
(PRIVATE AND PUBLIC SEGMENTS)

Service
Provider 1

Service
Provider N

MASPI RMS

UMD-NES U M T S
RADIO NETWORK

MASPI
U

RMS
U

NES - U

U M T S
FIXED (IP BASED)

NETWORK

H L - 2
RADIO NETWORK

MASPI
Η

RMS
Η

NES - Η

H L - 2
FIXED (IP BASED)

NETWORK

D V B - T
RADIO NETWORK

MASPI
D

RMS
D

NES - D

D V B - T
FIXED (IP BASED)

NETWORK

DVB-T
Service AreaHL-2 Service AreaUMTS Service Area

IP NETWORK
(PRIVATE AND PUBLIC SEGMENTS)

Service
Provider 1

Service
Provider N

MASPI RMS

UMD-NES U M T S
RADIO NETWORK

MASPI
U

RMS
U

NES - U

U M T S
FIXED (IP BASED)

NETWORK
MASPI RMS

UMD-NES

MASPI RMS

UMD-NES U M T S
RADIO NETWORK

U M T S
RADIO NETWORK

MASPI
U

RMS
U

NES - U

MASPI
U

RMS
U

NES - U

U M T S
FIXED (IP BASED)

NETWORK

U M T S
FIXED (IP BASED)

NETWORK

H L - 2
RADIO NETWORK

MASPI
Η

RMS
Η

NES - Η

H L - 2
FIXED (IP BASED)

NETWORK

H L - 2
RADIO NETWORK

H L - 2
RADIO NETWORK

MASPI
Η

RMS
Η

NES - Η

MASPI
Η

RMS
Η

NES - Η

H L - 2
FIXED (IP BASED)

NETWORK

H L - 2
FIXED (IP BASED)

NETWORK

D V B - T
RADIO NETWORK

MASPI
D

RMS
D

NES - D

D V B - T
FIXED (IP BASED)

NETWORK

D V B - T
RADIO NETWORK

MASPI
D

RMS
D

NES - D

D V B - T
FIXED (IP BASED)

NETWORK

DVB-T
Service AreaHL-2 Service AreaUMTS Service Area DVB-T
Service AreaHL-2 Service AreaUMTS Service Area

Figure 2

It is assumed that MONASIDRE components are
distributed in each domain. The components in
each domain are specialized for handling the
specific (UMTS, HIPERLAN-2 and DVB-T)
technology. However, these components can co-
operate for handling service provider requests
and/or new environment conditions. According to
the above, Maspi(U), Rms(U), and Nes(U) are

components specialized for the UMTS network,
similarly Maspi(H), Rms(H), and Nes(H) are
components specialized for the HIPERLAN-2
network, and finally Maspi(D), Rms(D), and
Nes(D) are components specialized for the DVB-
T network.

The Network Environment Simulator (Nes)
component of the MONASIDRE system is based
on different engines, one for UMTS, one for
HIPERLAN-2, one for DVB-T and one for the IP
network.

All Maspi and Rms components have a common
part, independent of the radio access technology
“MaspiRati” and “RmsRati”, as well as a part
specific to the radio access technology they
belong to, “MaspiRatd” and “RmsRatd”. The
following notations are used in this paper:

• MaspiRati: Maspi RAT Independent Part
• RmsRati: Rms RAT Independent Part
• MaspiRatd: Maspi RAT Dependent Part
• RmsRatd: Rms RAT Dependent Part

IV. PROPOSED APPROACH

We will describe the process adopted for the
development of the MONASIDRE platform. This
distributed architecture has been modeled taking
into account its internal functionalities and its
interactions with the surroundings.

Continuous development of quality software
requires a predictable and repeatable process in
order to be delivered on-time and on-budget.
Moreover, it requires cohesive teamwork and a
common understanding of the development tasks.
All members of a software development team
communicate through a common language.
Coherent and sound processes enable us to
develop individually, communicate
collaboratively and deliver high-quality software.

A. Rational Unified Process

The Rational Unified Process (RUP) [3] provides
a customizable framework, with all the templates,
guidelines, and supporting scripts to do process
customizations. We managed the tasks and

responsibilities within the development
organization. Its web-based interface makes it
practical, especially in the case where the
developers are spread around the world, like in
MONASIDRE project.

Our project was based on several cycles. Each
iteration cycle began with a plan for what should
be accomplished and concluded with an
evaluation of whether objectives have been met.
A complete cycle comprises the following phases:
Requirements, Analysis & Design,
Implementation, Test, and Planning & Evaluation,
as described in the Figure 3.

Figure 3

Moreover, RUP is tightly integrated with other
modeling software, like Rational Rose. The later
allowed us to gain the full benefits of the UML,
by working, phase by phase, on the Use-Case,
Analysis and Design, Deployment and
Implementation models.

B. Use Case Model

A set of comprehensive use case diagrams were
depicted during this phase of the project. For the
sake of simplicity, we have not shown the whole
set of diagrams. Use case diagrams added more
power to the requirements gathering. They
allowed us to validate scenarios and facilitated
communication between analysts and users, and
between analysts and clients.

C. Analysis and Design Model

As the system interacts with users and possibly
with other systems (e.g. Service Provider), the
objects that make up the MONASIDRE system go

through necessary changes to accommodate the
interactions. The state diagram shows the states of
an object and represents activities as arrows
connecting the states. The activity diagram
highlights the activities. State and activity
diagrams describing particular scenarios/states of
MONASIDRE are depicted in the Figure 4 and
Figure 5.

Figure 4

Figure 5

Once the use cases were identified and defined,
we focused our attention on the class structure
and object interactions that implement the system
behavior. Class diagrams illustrate the static
structure of objects and relationships in an object-
oriented system. Out of 300 classes, forming the
framework, an excerpt is shown in the Figure 6.

This is the minimal sub-set of the set of classes
that were defined within the project.

Figure 6

D. Deployment and Implementation Model

Component diagrams are one of the two kinds of
diagrams found in modeling the physical aspects
of object-oriented systems. They model the static
implementation view of the system and are not
only important for visualizing, specifying, and
documenting it, but also for constructing
executable systems through forward and reverse
engineering. The definition of the components
depends on the use of the components in the
generated code in case of automatic generation of
code. In the case of MONASIDRE, CORBA,
C++, Java and XML code has been generated...

Deployment diagrams are the second type of
diagrams used in modeling the physical aspects of
systems. They involves the modeling of the
topology of the hardware on which our system
executes.

V. CONCLUSIONS

Developing with UML is fast and challenging;
and the automatic code generation from UML
decreases the development time and costs.
Moreover, the high-level design and the UML
implementation-independent characteristics allow
software reusability. We were able to reuse initial
building blocks for our platform during the
integration phase.

The reverse engineering process which allowed us
to convert existing source code into Rose
elements, is essential to be able to model the
complete system, including already existing
packages (SNMP, COPS, XML…) written in C++
and/or Java.

We pointed out in this paper the key features that
should characterize the design of an advanced
management platform. The examined process is a
step-by-step approach from problem definition to
the realization of the platform. This is based on
our experience in designing and implementing a
“Beyond 3G” management platform. This UML
modeling is aimed at ensuring consistent global
delivery of software development services to
reduce risk and guarantee quality.

Future work will consist in providing a set of
design patterns needed for the design of advanced
service management platform. These design
patterns address several layers. At a software
design layer, we should be able to identify
patterns for a multi-developer interworking, thus
providing reusable and sound approach for
software design. At a framework architecture
level, we need patterns particularly suited for
object-oriented distributed and concurrent
systems. Flexible and lightweight object
composition within a larger system is of high
interest in providing advanced service and
network management platform.

ACKNOWLEDGEMENT

We thank Georges Martinez (Motorola Labs) for
his comments and feedback. This work has been
performed in the framework of the IST-2000-
26144 MONASIDRE, which is partly funded by
the European Union. The authors would like to
acknowledge the contributions of their colleagues
from National Technical University of Athens,
Motorola Technology Centre Italy, Telefonica
Investigacion y Desarrollo, Institut National des
Télécommunications, University of Applied
Sciences Valais, Shineline, Omnys Wireless
Technology.

REFERENCES

[2] Object Management Group (OMG),

http://www.omg.org
[3] Booch, Jacobson, Rumbaugh. The Unified

Software Development Process. Addison
Wesley. 1999.

|4] IST project MONASIDRE (Management Of
Networks And Services In a Diversified
Radio Environment), http://www.monasidre.com,
Jan 2002

[5] Grady Booch. Object-Oriented Analysis and
Design with Applications. Addison Wesley.
1994.

[6] Rational Software Corporation.
http://www.rational.com

[7] Divakara K. Udupa. TMN
Telecommunications Management Network.
McGraw-Hill Telecommunications. 1999.

[8] RFC 2748. The COPS (Common Open
Policy Service). IETF. 2000.

